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We study the invariant measure of a Markov chain obtained by randomly com- 
posing two rational maps  related to the Anderson model with a Bernoulli 
potential. For a certain range of the parameters we show that the invariant 
measure is singular continuous. In certain cases the support  turns out to be a 
Cantor  set with a multifractal structure. 

KEY WORDS:  Markov chains; invariant measure; Anderson localization; 
fractals. 

1. I N T R O D U C T I O N  

This paper is concerned with the following problem, which arises in the 
mathematical theory of one-dimensional disordered systems. We refer the 
reader to the early works by Dyson and Schmidt and to the review by 
Ishii. (1) 

Let {vn} be i.i.d, random variables with values in {0, 1} and for 2 > 0  
let ~bx be the solution of the Cauchy problem for the difference equation of 
the Schr6dinger type: 

[2v(n) - E] ~b(n) = ~b(n + 1) + r - 1) (1.1) 

r 
where e,/~ are real and E e  R has the physical interpretation of an energy. 
We introduce the random variables 

z ,  = q ~ ( n  - -  1 ) /06~(n)  
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It is readily seen from (1.1) that the variables z n obey the random recursion 
relation 

z, = 1/(2v, - E -  z ,_  1) (1.2) 

and thus they form a Markov chain in R. If we denote by p = Prob(v = 0) 
and by v = Ve, p,~ the invariant measure of the chain [whose existence is a 
basic result of Furstemberg; see, e.g., Ref. 2, p. 30], then the question we 
raise is the following: under which condition on Z and E is the measure v 
absolutely continuous with respect to the Lebesgue measure? 

This particular problem is actually part of the more general question 
of the long-time behavior of a Markov chain obtained by randomly com- 
posing two (or more) maps in some metric space. This kind of stochastic 
process arises in different fields, such as the statistical mechanics of 
disordered magnets, (3) in discrete biological models, ~4) or in the theory of 
random perturbations of dynamical systems. (5) In this work we will 
concentrate on the particular case described above where the maps are 
unimodular; in a subsequent paper we will consider more general 
situations. In our context very interesting but nonrigorous results have 
been obtained by Derrida and Gardner (6) by means of perturbation theory 
around the free case 2 -  0; their results indicate a positive answer to the 
above problem for 2 ~ 1 and E close to one the special values 

E~,q=2COS(rcq/L), k, q~N (1.3) 

On the other hand, Pincus (7) showed that if each of the two rational maps 
that appear in (1.2), 

T0(x)= -1 /E+x,  Tl(X) = 1 / 2 - E - x  (1.4) 

has two fixed points, one stable and the other unstable, then under some 
extra condition on E and Z, the support of the invariant measure becomes 
a Cantor set of zero Lebesgue measure. In this case v becomes singular 
continuous, since by very general results v cannot be pure point 
(Ref. 2, p. 30). Pincus' condition is, however, inadequate to discuss the 
mathematically interesting case when at least one of the two maps is 
elliptic. This occurs for E in the set [ - 2 ,  2] • [ 2 -  2, 2 + 2], that is, when 
E is in the spectrum of the infinite stochastic Jacobi matrix given by 
Eq. (1.1) looked upon as a bounded operator in lz(Z) (see, e.g., Ref. 8). 
From the physical point of view, it is precisely for these values of the 
energy E that the problem becomes relevant, since a detailed knowledge 
of the invariant measures of the variables z, provides a great deal of 
information about the spectral properties of H (see, e.g., Ref. 2, Part B, 
Chapter 2). 
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In this paper we show that if 2 is taken large enough, depending on p, 
but not on E, then the measure v becomes singular continuous. In order to 
state our result in a precise way, let us introduce the Liapunov exponent 
given by the formula 

7(A, E) = - f  dvx,E(z) ln(lzl) (1.5) 

According to Furstemberg's basic result, ~ is strictly positive for any 2 > 0 
and any E e R  and it expresses (with probability one) the rate of the 
exponential growth of the solution of (1.1) for a fixed initial condition. 
More precisely, one has 

7(2, E ) =  lim ( l /n) log I~b~(n)[ (1.6) 
n 

for almost all the configurations {vn} in {0, 1} z with respect to the 
Bernoulli measure of parameter p. 

With the above notations our main results can be expressed as follows: 

T h e o r e m  1. If ~(2, E) > ln(2)/2, then v is singular continuous. 

Corollary. If 2>exp[ln(2)/2K(p)] with K(p)=(1-p)2 /2[ l+ 
(1 _p)p2], then v is singular continuous. 

The corollary is a simple consequence of Theorem 1 and of the 
following result due to Martinelli and Micheli(9): 

inf 7(2, E) > K(p) ln(2) (1.7) 

Remark 1. The above theorem is the exact analogue of a result 
proved by Carmona et alJ 1~ for the integrated density of states (ids) N(E) 
of the random matrix H. As is well known, the ids N(E) can be expressed 
in terms of the invariant measure by 

f 
0 

N(E)  = av~,~(z) (1.8) 

Remark 2. For general results concerning the relationship among 
Liapunov exponent, entropy, and dimension of the measure v, see Ref. 11. 

For the special values of the energy E in [ - 2 ,  2] given in (1.3) with q 
and L relatively prime, it is possible to compute in a rather explicit way the 
support of the invariant measure at least for 2 large. The reason is that for 
such energies the Lth power of the map T O becomes the identity and this 
simplifies the problem considerably. Our result is the following: 
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Theorem 2. Let E = 2  cos(rcq/L), with q and L relatively prime 
integers. Then there exists a )oc(L) such that if A >~ 2c(L), then the support 
of the invariant measure is contained in a Cantor set of zero Lebesgue 
measure. 

One may ask at this point whether the critical value of 2 given by 
Theorem 2 is such that Theorem 1 also applies, namely if 7(2c, E) > ln(2)/2. 
We analyzed this problem for the special case E = 0, namely L = 2, and we 
found that ~.c(2)=2, while 7(2~,E)<ln(2)/2 for any value of the 
probability parameter 0 < p < 1. Thus, in this case Theorem 2 gives a more 
refined result. 

In this particular situation we also analyzed numerically the structure 
of the support of the invariant measure and we found that it is a Cantor set 
with a multifractal structure. For  this last part we followed the approach to 
multifractality suggested in Ref. 12. 

2. PROOF OF T H E O R E M  1 

In order to simplify the exposition, we first fix some useful notations. 
We denote by ~L a sequence of O's and l's of length L, by ~oL(j) the 
number at the j th  position in the sequence, 1 < j < L, and by 

p(~oL) = p # ~j;~oL(j)= 0}(1 _ p) # {J;~L(J)= 1} 

its probability. Given a sequence ~OL, we can associate to it the rational 
map T~L obtained by composing the maps To, T1 in the order given by ~oL: 

T o  L = TCOL(L ) . . . . .  TooL(2 ) o TOgL(1 ) 

If we write 
aLx--bL 

T, oL CLx--dL 

then we have the recursion relation 

aL = C L -  1 

bL -~ d L _  1 

cL = [2coL(L) -- E]  co_ 1 

dL = E~o~L(L) - E3 dL_~ 

From (2.3) we also obtain the identity 

aLdL--bLcL=aL-ldL 1 

- - a L _  1 

- - b L _  1 

(2.1) 

(2.2) 

(2.3) 

- b e -  l c L -  l (2.4) 



Random Composition of Two Rational Maps 1025 

which implies 

aLdL -- bLCL = 1 (2.5) 

Finally, we will denote by S the point x = dL/c L where the map ToL 
becomes singular. 

It is now possible to explain in simple terms the idea behind the proof 
of our main theorem. 

Using Fustemberg's result on the positivity of the Liapunov exponent 
7()o, E), we will show that with large probability, the map To, L will be 
almost flat with the exception of a tiny interval around the singularity, 
where it will be extremely steep with derivative T'L=o[exp(27L)].  This 
fact will imply that a large portion of the real line will be mapped by To, L 
into a small interval of size O[exp( -27L) ] .  Since the total number of these 
intervals as co L varies does not excede 2 L, if ~ is as in the theorem, we have 
that with large probability the process zr will lie in a set of vanishing 
Lebesgue measure as L tends to infinity, and the result will follows. 

We now start with the technical details. 

Lemma 1. 

a s L ~  +m.  

For every e > 0 the probability 

P T~,LIx=o<e-(2~-~)L ---+ 1 

Proof. By direct computation 

= 1/d  

Since it is well known that 

(2.6) 

lira ( l /L) In ]drl = 7 a . s .  
L ~  

(2.7) 

(see, e.g., Ref. 2, p. 228), the lemma follows immediately. 

Lemma 2. 

then 

Suppose that 

T'L(O ) < e-(2Y-~) L 

e - ( 2 y  - e)L 

T' L(x) < -( 1 - x / S )  2 
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OrooL Using (2.2) and (2.5), we get 

1 1 
I~L(X ) = ( C L X -- dL) 2 -- d~(1 - x/S) 2 

We are now ready to complete the proof of the theorem. 
Let ~ > 0, k > 2 and define for any COL the set 

IkL=_[--k,k] if [SI > 2 k  

I~L=_R\[S(1--5), S(1 + 5 ) ]  if Ial ~<2k 

(2.8) 

with e small enough and k sufficiently large. 
Next we construct a deterministic set X = S ( k ,  5) of zero Lebesgue 

measure but with positive v, provided k and e are sufficiently large and 
sufficiently small, respectively. We set 

where 

= 0 U U T~LI~L (2.9) 
i L > ~ i  O)LE~ L 

~ L  = {COL; T ~ L ( X ) I x = 0  • e-(2~-~)L} 

By Lemma 2 for any col ~ OL the Lebesgue measure of the interval T~I~L 
is smaller than 

IT~LI~LI <~ 4 k e  ~2~ e)L (2.10) 

and therefore if 2 exp[  - (27 - 5) L ]  < 1, the Lebesgue measure of X is zero 
since 

IXI ~< lim ~ 4- 2L(i/e) exp[  -- (27 -- e) L ]  ---- 0 
i ~ c o  L > ~ i  

(2.11) 

Using Lemma 1, we will now show that we can choose k and e such that 
v ( r )  = 0. 

We have in fact 

L ---* o~ r E COL 

~> lim ~ P(coL) V(I~L) (2.12) 
L ~  oo COLby2 s 
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This last inequality is a simple consequence of the equation expressing the 
invariance of the measure v: 

v(A) = pv(To lA) + (1 -- p) v(T(IA) 

for any ACB(R). 
If we take A as 

we get 

v(o Uo 

A= U TcoffkcoL 
oa L E (2  L 

= ( l - - p )  v(T? ~ U To~I~L) 
cO L E if2 L 

r L 

cOL ~ QL,COL( L ) = 1 

By iterating (2.14) L times, we arrive at (2.12). 
The rhs of (2.12) can now be bounded from below by 

(2.13) 

(2.14) 

lim ~ P(~oL) v(l~)L) 
L ~ oo COL E .f2 L 

~> lim P(OL) m i n ( v ( - k ,  k), inf v(R\[-r /(1-g),  q(1 +~ ) ] )  
L ~ o o  ]r/I < 2 k  

>~min{v(-k,k), inf [1-v(q(1-~) ,q( l+e))]}  (2.15) 
Ir/I < 2 k  

It remains to show that the rhs of (2.15) is positive for suitable k and e. 
This is, however, clearly the case, since v is a probability measure on R 
nonconcentrated on a single point. 

The above argument just shows that v must have a singular con- 
tinuous component. However, it is easy to show that the measure v is 
"pure," i.e., singular continuous. In fact if we define 

then clearly 

s=U U:c,7 
L OaL 

v(Z) = I, IZf = o 

822/ '50/5-6-12 
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3. PROOF OF T H E O R E M  2 

In this section we compute explicitly the support of the invariant 
measure for energies of the form E = 2 c o s ( n q / L )  and we prove Theorem 2. 
At the basis of our analysis is the following simple remark: If we consider 
the composition of n maps T o 

where we write 

T S ( x )  = P . ( x ) / Q , , ( x )  

P , , ( x )  = a . x  - b,, 

Q . ( x )  = c . x  - d .  

then we have the recursion relations 

a n + l  = C n  

b n + l  = d n  

c .  + 1 = - E c , ,  - a,, 

d, ,+ 1 = - E d , ,  - b .  

(3.1) 

with a l = 0 ,  b l = - 1 ,  c 1 = - 1 ,  d l = E .  These equations can be solved 
explicitly for E~  ( - 2 ,  2), E =  2 cos ~, and one obtains 

sin n~ 
c .  . . . .  b .  

sin 

sin(n + 1 ) 
d .  - (3.2) 

sin 

sin(n - 1) 
a n ~  sin 

Let us now consider the maps 

CnX --  d n 
T l  T ~  = 

(,~ --  E ) ( c . x  - dn)  - ( a . x  - b . )  
(3.3) 

The equation giving the fixed points (if any) of these maps is 

c , , x  --  d .  = -2Cn x 2  - -  - 2 d . x  - -  an x2  q- b . x  

with 2 = 2 - E, that is, 

g d  n +_ [ ( - 2 d n )  2 - -  4 d . ( g c  n - a . )  ] 1/2 
x =  

2(2oc. - a . )  
(3.4) 
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If _2 Idol ~ Ic~l, then 

2 2 -2 d,,-4d,,gc,, +4dna,,>O 

that is, we have two real solutions of (3.4) 

xT,=-2c,_a,  ' -2 ~-o 

x ; ; = ~ +  + o  

(3.5) 

x~ is a stable fixed point, in fact: 

d 

TI Tg(x)Ix = ,~. = [g(c,x - dn) - a,,x + b,,] -21~ = x', 

{ }2 
2dn 1 E22d]_4d~(_2c _an)]~/2 + b" 

2 2 - 

which for large 2 behaves as 

,.,., ( - 2dn ) -2  .~_ O(g 3) (3.6) 

Thus, in conclusion, if the critical condition _2 Idn] ~> Ic, I is satisfied, the 
map T~ T~ becomes hyperbolic with a stable fixed point of order 1/2 and an 
unstable one of order o(1). 

Let us now consider a value of the energy E of the form 

E =  2 cos[kn/(L + 1 )] (3.7) 

with k and L prime integers and k < L + 1. 
We have immediately from (3.2) that T ~ + I = I .  Moreover, the 

condition _2 [d,[ ~> [c,[ is verified for any n < ~ L - 1  and 2 sufficiently large 
depending only on L. 

For n = L we have instead: 

TI TS(x) = T~ To X(x) = x/(.~x + 1) (3.8) 

Thus, in this case the stable and unstable fixed points coincide with the 
origin and obviously (T1 T~) ' (x)Ix=o= 1. 

The graph of the maps T~T~, 0~<n~<L, in the interval 
[0, maxo_<,~<L x~,] is illustrated in Figs. 1 and 2. 

Here n is such that x~ = max0 ~ n_< L x~, and the concavity of the map 
T1 T~ depends on the sign of its unstable fixed point. In the above picture 
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B.3  

~~ 

8. 

B. 

1 

G 

I ' ' ' ' I ' 

J 

I I I 

[3.1 8 .2  B.3  

Fig. 1. Graph of the maps T 1Tg, 0 ~< n ~ L, for E = 1, 2 = 4. 

the reader will notice that for any 0 ~< i~< L, TI T~ , (x ) -  T1T~'-~(x)> 0 for 
any O<~x<~x'~, where n~=L, nL=n. This is in fact true if 2 is taken 
enough, depending only on L, and this, as will appear clear in a moment, is 
the cause of the Cantor structure of the support of the measure v. To prove 
it, we observe that in the interval [0, x~,] all the maps Ta T~, 0 ~< n ~ L, are 
increasing, since their singularity S,  is always o(1) compared with 1/2. 

B . 4 - -  - 

8 . 2  

8 . ~ V  . . . .  I , , , , I . . . .  I 
B B.2  B.4  G.S 

Fig. 2. Graph of the maps T 1T~ ,0<~n~L,  for E = 0 , 2 = 2 . 2 .  
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t/i  l S Thus, it is enough to show that Z 1Z~(0)> T 1T~ (Xn) for any 0~< i<~L. 
F o r  i =  1 we have 

1 / _ 2 + c , , / d n _ 2 2 + ~  
V~ TL(X'n)= 2 ; e ~ ~ 2  + o(--~22) = 2-2+ o (3.9) 

and 

T~T~(O)= T ~ T ~ ( x ; ) -  o dx -2 + )~--~. + ~  

Therefore 

To (x~) T1T~(0)> T1 r s 

Analogously, we can prove that 

/'/i l S T 1 Tgi(O) > T 1 T O (X n) 

for any n < L 

for i--2,..., L (3.10) 

This easily follows from the following two inequalities: 

xs _ x, ) + o 

1 sin ( sin(n/-- n i _  1) 
- _2 2 sin(ni + 1 ) ( s in (n i_  ~ + 1 ) ( 

>_~ Isin (s in  j(I + o , I<~ j<~L-1  

and for x e [0, x s] 

(3.11) 

L e m m a  3. Let 

L 

2:o- [o, x,',] ~ U T~[O, x~] 
i = 1  

IT1T~(x) - T 1 T~(x~)l 

~< sup T1T~)(x)[x-x~[<~7-f-~ +o ~ (3.12) 

The first consequence of this analysis of the maps T~ T~ is the following: 
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and let Z" be the support of the invariant measure v for an energy E of the 
form (3.7); then 

X o ~ X  

Proof. Zo is an invariant set for the maps T1 and T~ T~), 1 <~ i ~< L, as 
clearly emerges from the previous discussion (see Fig. 2); furthermore, for 
any x ~ R there exists a finite sequence of maps T~oL(x) such that T~L(x)~ Zo. 
This clearly implies that with probability one the process z, will reach the 
set Z0 in a finite number of steps. 

Our knowledge of the maps T 1T~) in [0, x~] enables us to state 
even more than this: let G ; , i = 0 ,  1 ..... L - l ,  be the intervals 
IT1T'~'(x~), T 1T~'+1(0)] (see Fig. 1 for the case E =  0) and let 

{ \ ( L ~ I G j ) } L {  I(Lu= 1 )} 
\ \ j = 0  i = 1  j 0 

Then the same proof of Lemma 3 shows that 27~ = ~V. It is important at this 
point to observe that for any 0 <~ n, m ~< L, T~[0, x~,] n T~[0,  x~,] = ~ if 2 
is large enough. 

If we now consider the images of the gaps {Gj} under the action of 
the maps T1 T~, n = 0, 1,..., L, then we will obtain new gaps in the set Z. 
This is a consequence of the monotonicity of the maps T~ T~ in [0, x~]. 
The Cantor structure of the support 2J will therefore appear by iterating 
the above argument infinitely many times. To be more precise, let us 
introduce the set G (") of gaps produced after n iterations in [0, x~] and let 
B" -= [0, x~]\G ("~. Then clearly 

G(~+I)=G(~)w T1Tio(G (~) 
i 1 

Using again the monotonicity, it is easy to see that G ("+ 1) consists of the 
union of the old set of gap G (") and of a certain number of open intervals 
mutually disjoint strictly contained in B,,  which represent the new gaps. If 
we now set 

Boo = (~ B~ 
n = l  

then by the same proof of Lemma 3 we obtain: 

L e m m a  4. 

ZCB~ w T 1TJo(B~) 
J 



Random Composition of Two Rational Maps 1033 

In order to prove that the invariant measure is singular, we will show that 
the Lebesgue measure of the Cantor set Boo constructed by the previous 
discussion is zero. 

By construction, the set Bo~ satisfies 

L--I  
Boo = U T~ TJo(B~ ) u T 1 TL(B~)  

j=O 

B (<L) ~ T1 TL(B~)  

For i < L  

(3.13) 

[T1T~o(B~)I <. sup 

where I.I denotes 
have 

(d/dx) T~ T'o JB~I =_- A IBool 

the Lebesgue measure and A =o(1/22). Therefore, we 

IB(<L)I <~AL IBm[ with AL ~ 1 (3.14) 

i f 2 > l .  
For the map T1 T~ we have 

d d 
sup T, T L T1ToL(0) = 1 

x~ ~0,41 Txx = 

and thus we need a more detailed control of IT 1 T~(B~)I. Let 

B1 ~ [ ( r l  Tor)2(xS),  L s T, To (x . ) ]  

Bi ~ T1 TL(Bi-  1 )' i = 2, 3 .... 

B i = Boo ~ B i 

We have 

(3 .15)  

I_B,I ~< CI_B~I (3.16) 
i=2 

In fact 

[3,+ d = IT1T~(B,){ <~ sup (d/dx) Tt T~ IB_,I 
x~Bi  

If we set 

ai = sup (d/dx) Tt T~(x) 
x~B~ 
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we get 

and 

i 

18;+11 < H ~j 1811 
j = l  

i--I 

i = 2  i = 2  j = l  

To prove (3.16), we observe that 

i --1 

[-[ ej<C 
i = 2  j ~ i  

x ; >  IBil> [ I  flj IBal 
i = 2  i = 2  j ~ l  

where 

a n d  ]~i ~ - ~ i  1, s i n c e  

fli = inf (d/dx) T 1 TL(x) 
xEBi 

d 2 
~xx T1 ToL(X) = --22(Zx+ 1) 3 < 0  

in [-0, x~,]. This implies 

x'.>~olBll 1+ [I ~J 
i=2 j=l  

where 

By taking 

O~i:~ (MINx) T 1 TL[  T1 TL(xs )  ] 

C = x S / ~ o B 1  = 0(1)  

we get (3.16). 
From (3.16) we now get 

ITIT~o(B~)I = ~ I_B,I ~<(C+ 1)[Bll 
i = l  

Martinelli  and Scoppola 

(3.17) 
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Since 

_31 - T1 T~(B (<L)) 

d r ~  s (3.18) 
I~11 <~ T1 IB~<C)l : 0~1 ]B(<L)[ 

[ x = ( r l  T0)2(%) 

From (3.14) and (3.17) we conclude that 

IB~l ~< IBool A L l 1  + ( C +  1) ~1] 

with A ~ o(1/2a); for 2 sufficiently large, this implies IB~[ = 0. 
Let us now examine the special case E =  0 and 2 = 2. Then the two 

fixed points of the map T I collapse together into the point x =  1 and in 
order to determine the structure of the support of the invariant measure in 
the set (0, 1) we will have to consider only two maps: 

T1 (x) = 1/(2 - x), T = Tl o To(x) = x / (2x  + 1) 

Clearly the interval (1/3, 1/2) is a gap and therefore the support of the 
invariant measure inside (0, 1) is again a Cantor set. It remains to check 
that its measure is zero and we will do that by redoing the previous com- 
putation in a slightly more careful way. The reason for that is that the 
point x = 1 is no longer a stable point for the map T1 and T'l(X = 1)= 1. 

Let us denote by A and B the parts of the support S inside the 
intervals ((1/2, 1) and (0, 1/3), respectively. Then we have 

A = TI (A)  u T~(B), B = T(A)  u T(B)  (3.19) 

By iterating (3.19) infinitely often, we get that the Lebesgue measure of A, 
IAI, is bounded by 

IAI < ITa(A)I + sup T'l(X ) ~ IZn(A)l (3.20) 
0 < x <  l / 3  n = l  

Since T " ( x ) =  x / (2nx  + 1), we get from (3.20) the inequality 

[AI < ITI(A)I + (9,25) Y' (1/n 2) IAI 
n = l  

= [TI(A)I + (27/50)IAJ (3.21) 

Let us now write A as A = U i A  i, where, A i + I = T I ( A i ) =  T~-I(At) and 
AI=A(1/2 ,  T~(1/2)). Using the explicit formula for T~ ~(x)= 
1 -  [ i - 1  + 1 / ( 1 - x ) ]  -~, it is easy to check that the following inequality 
holds: 

IAnI<IAII ~ 25/(2n+5) 2 (3.22) 
n ~ 2  n = l  



1036 Martinelli and Scoppola 

which, combined with (3.21), gives 

A little estimate shows now that the numerical factor appearing in the rhs 
of (3.23) is smaller than 1, thus proving that IAll and afortiori LAI and IBI 
must vanish. 

We now check that indeed for the case under consideration the 
Liapunov exponent does not satisfied the inequality required in Theorem 1. 
To do that, we used the following elementary upper bound on the 
Liapunov exponent(n: 

7 ~< 1/2 log IA[ (3.24) 

where A is the largest eigenvalue of the 4 • 4 matrix A defined as follows: 

4(1 - p )  -4 (1  - p )  0 1 1 
2(1 - p )  - 1  0 0 

A--  2 ( 1 - p )  0 - 1  0 

1 0 0 0 

Using the explicit form of the matrix A, it is very easy to see that its largest 
eigenvalue A is strictly less than 2 in absolute value for any value of p in 
(0, 1). 

4. M U L T I F R A C T A L  S T R U C T U R E  OF THE I N V A R I A N T  
M E A S U R E  AT E = 0  

In this section we investigate, mainly numerically, more deeply the 
structure of the support of the invariant measure for E = 0 and 2 > 2. For 
these values of the parameters we found in Section 2 that the part of the 
support contained in F0, Xs], Xs being the stable fixed point of the map T1, 
is a Cantor set 2: and it is therefore a natural question to ask whether v 
and 27 have a multifractal structure. By this we mean the following: let e > 0 
and for x e 27 let B~(x) be the interval of length e centered at x. Then one 
expects that the v-measure of B~(x) will scale as ~ goes to zero as 

If the scaling exponent ~(x) attains different values on different sets of x's, 
then we say that v is multifractal (see, e.g., Ref. 13 for a nice review on this 
subject). It is, however, important to recognize that in general for v-almost 
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all x in Z, ~(x) is independent of x, ~(x)= ~o (see Theorem 5.1 of Ref. 11). 
Values of ~ different from ~0, say ~(x) = ~, are attained over subsets of-~ of 
Hausdorff dimension f(~)  smaller than that of-~. 

These and related topics are discussed in an interesting paper, ~12~ 
which stimulated subsequent work (see also Ref. 14 for a critical 
discussion). In particular, in Ref. 15 all the statements that will follow have 
been proved rigorously for the invariant measure of expanding Markov 
maps on the unit interval. 

In order to compute the scalings of the measure v, we first observe that 
it follows in a trivial way that the restriction of v to the interval [0, xs] 
coincides, apart from a normalization factor, with the invariant measure/~ 
of the Markov chain in [0, xs] generated by taking the maps T and TI 
restricted to [0, x~] with probability p ' =  p/(1 + p) and 1 - p ' =  1/(1 + p), 
respectively. Then the recipe to compute the dimension f(~)  of the set of 
singularity of strength ~ for # is the following: 

For q, t ~ R, let F(q, t) be given by 

F(q,t)= lim s u p l l n ~  PqL (4.1) 
L~oo x L IT~L[0, xs]l '  

and let t(q) be the (unique) value of t such that F(q, t(q))= 0. It is easily 
seen that t(q) is a concave function of q, and its Legendre transform 

f(~) = min {q~ - t(q)} (4.2) 
q 

gives the Hausdorff dimension of the set, where ~(x)--~, provided that 
0~rnin < ~ < ~ . . . .  where ~ r n i n ( m a x ) = l i m q ~  +r t(q). Furthermore, f (~)  is 
concave with a unique maximum at ~* and f(~*) coincides with the 
Hausdorff dimension of the set Z'. In our context the existence of the 
function F(q, t) is guaranteed by the following proposition (see the Appen- 
dix for a proof): 

Proposition 1. (a) F(q, t) exists for any q, t and it is jointly 
continuous in t, q and strictly decreasing (respectively increasing) in q (t). 

(b) There exists a unique continuous, concave, strictly increasing 
function t(q) such that F(q, t(q))= 0 for any q. 

We did not attempt to prove the statement concerning the function 
f(~), but we believe that the ideas in Ref. 15 should apply also in this case. 
Instead, we computed numerically t(q) and its Legendre transform f(~)  by 
exploring the contribution to F(q, t) of trajectories with length L = 8. The 
results for 2 = 2.2 and p' --- 0.3 are given in Fig. 3 and show a continuous 
distribution of scalings ~ between the values ~min = 0.5 and ~max = 1.2. The 
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t 
0 . 7  

O. f i  

0 . 5  

0 . 4 - -  

0 . 3 - -  

' ' I . . . .  I . . . .  I . . . .  I 

, , I . . . .  I . . . .  I . . . .  I 
G . B  0 . 8  1 1 . 2  

Fig, 3. Graph off(~) for 2=2,2 andp'=0.3. 

" typical"  scaling is ~* =0 .75 ,  to which corresponds  a value f ( ~ * ) = 0 . 6 9 .  
Figure 4 plots instead the graph  of the function D ( q ) =  t(q)/(q-1). It  is 
impor t an t  to observe at this point  that  it is quite difficult to obta in  
reasonable  numerical  results for finite L (e.g., L = 10) and negative q and t 
(of order  - 2 0 )  if the pa rame te r  p '  is greater  than  0.5. The  reason is that  for 
these values of the pa ramete r s  the dominan t  trajectories in the sum in (4.1) 
are t h o s e  with very few maps  T~ and for such trajectories the small 
intervals ]T~oL[0, xs][ do not  scale exponent ial ly  in L, since T ' ( 0 ) =  1. 

1. 

1. 

0~  

0.1 

. . . . . . . . .  . . . . .  I . . . .  I . . . .  I '  
2 

, [  . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I ,  
- 2 0  - 1 0  G 10 2Q 3g 

Fig. 4, Graph  of D(q) for 2 = 2.2 and  p' = 0.3. 
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A P P E N D I X .  P R O O F  OF P R O P O S I T I O N  3 

We split the proof into several steps. 

1. We have 

1 
lim sup 

L ~ c o  Z 

PqL Pq ' , /Z , 
In ~ iTcoL[O, x,]l [Tco~(x)] J 

C~ ~ COL 

= 0  (A.1) 

In fact 

pL~ P~oL T~Ax_) 
} ~ , t < m a x  

ITco~[0, x,]l  [rco~(x)] co~ IT, o~[0, x , ] l .  COL COL 

> r a i n (  T'L(x) )' 
o~L \[TcoL[0, xs][ 

(A.2) 

and 

T ' , ( x )  T'~(x) 1 

ITcoJ-0, Xs]l T;~(~) x,' O ~ r  

with ~ = ~(coc). 
We can now write 

T2*(x ) -  [ I  T'~.~(x3 

' TcoL(i)(r T.L(r ~=, ' , 
X i = Y c o i _ l ( X  ) 

and analogously for r Now 

- 1 + - -  ( x , -  ~i) 

>~ 1 + K~ I x i -  r 

1> 1 - / s  I x , -  GI (A.3) 

It remains to show that x i - ~ i  goes to zero as 
computation we get 

[x_~i[<~(fl.i+l) i V~OL 

i--* oo. By explicit 

(A.4) 

for a suitable constant ft. 
This estimate is very bad for a "typical" coL, but it is optimal for coc'S 

with a large number of maps T. By plugging (A.4) into (A.3), we get (A.1). 
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2. Let 

Then 

_Fc(t, q) = sup in ~ PqL 
o~L [T~L(x)] '  

FL+k <<.FL +Fk 

Subadditivity is just a consequence of the chain rule: 

P X T<oL+k( ) =  T~L(To~(x))" TZk(x) 

Thus 

(A.5) 

(A.6) 

- F L + k = s u p l n ~ t ~  L , - -  , 
- x . - < , , ~ .  ,o>~ r < ~ E L o ~ ( x ) ]  ) 

P~k PqL 
~< sup In ~ + sup In 

[ 7 " ~ ( x ) ] '  [T'L(x)]' 
X (O k X CO L 

=&+_rk 

Using 1 and 2, we get the existence of the function F(q, t). Joint continuity 
of F(q, t) in q, t follows by straigthforward estimates. 

To prove strict monotonicity of F(q, t) as a function of t, we need the 
following result: 

3. We have 

F(q, t) = lira sup 1 In ~ PqL 
L - o o  ~< L IT<,,L[O, X s ] I '  

1 (>")  PaL 
= lim s u p z l n  ~ it 

L ~ o~ I To~L[ 0, Xs] 

with n = ~L and ~ < 1, where ~(>") is the sum over all ~o/~ with more than 
n maps T 1. In order to prove this identity, we use the following remark: 
Let ~o L be a trajectory with n maps T 1 ; we denote by k the number of bloks 
of maps T of length mi, i = 1,..., k, that is, ~ t  ~ m i = L -  n; then 

O-IT~L[O, x s ] l>~exp( - f l n -2cn )exp[ -Lexp( -c ) ]  (A.7) 

where e - n =  infx T~ and c is a suitable constant. 
In fact, since Tm(x) = x/(2mx + 1), and therefore 

[ T'~(x)] ' = ().mx + 1 )-2 >~ ()omx~ + 1 ) - 2  ~ O/rn 2 



Random Composition of Two Rational Maps 1041 

for D sufficiently small, we have 

k k 

0 >~ e ~ [I D/rn~ = e ~"e -k ln(1/D) 1-[ 1/m~ 
1 l 

By using the Jensen inequality and the obvious remark k ~< n + 1, we have 

ln(H11m~)=2k~(1/k'lnm'~2kln[~1 _ (1/k)ms] 

= 2k ln[(L - n)/k] <~ 3k In(L/k) 

By studying the function x ln(L/x) it is easy to see that 

k in(L/k) <~ ck + Le -c 

for any c > 0, which proves (A.7). 
Now we come back to the proof of identity 3. The sum Zo)L appearing 

V (<~L) and 3 ~(>~L) where, in the definition of F(q, t) is split into two sums ,..,~ ~oL 
as before, in the first sum we consider only the trajectories with at most ctL 
maps T1. By means of the estimate (A.7) together with the trivial one 

I T~L[0, x~]l ~ e  -~'~ (A.8) 

where n is the number of maps T~ in T~L and e - P ' =  infx T'L(x), it is easy 
to see that it is possible to choose the constant c in (A.7) sufficiently large 
and ~ sufficiently small in such a way that (<~L) 5-(>~L) )Z~oL < ~o~c for any L 
sufficiently large. This shows that 

( > ~ L )  

F(q, t) = lira ( I /L) In  
L ~  

~L 

Once this has been established, it is easy to see, using again (A.8), that 
F(q, t + 6)> ~6 + F(q, t). Strict monotonicity in q follows by direct inspec- 
tion as well as the other statements of the proposition. 
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